ข้อใดเป็นสมบัติของรังสีแกมมา

ข้อใดเป็นสมบัติของรังสีแกมมา

ข้อใดเป็นสมบัติของรังสีแกมมา

คอร์สเรียน

เกี่ยวกับเรา

OPENDURIAN

หน้าแรก

คอร์สเรียน

คลังข้อสอบ

คลังความรู้

เกี่ยวกับเรา

ล็อคอิน / สมัครสมาชิก

  • ม. ปลาย
  • /
  • O-NET วิทยาศาสตร์
  • /
  • O-NET วิทยาศาสตร์ ม.6 กุมภาพันธ์ 2554

ข้อ 52

52 of 90

ฝึกทำโจทย์แบบชิลๆ

น้องๆ สามารถเลือกทำโจทย์ได้ตามต้องการ ไม่มีการจับเวลา ไม่มีการนับคะแนน ตอบผิดแล้ว สามารถตอบใหม่ได้ สิ่งสำคัญ ก็คือ ควรทำความเข้าใจกับวิธีทำในเฉลยละเอียด การเรียนคณิตศาสตร์ให้ได้คะแนนดี ต้องเรียนด้วยการลองทำโจทย์เยอะๆ

เคล็ดลับจากติวเตอร์

ระหว่างอ่านเฉลย อย่าลืมมองหา "เคล็ดลับจากติวเตอร์" กรอบสีเขียว เพื่อเรียนวิธีลัด ตีโจทย์แตก เร็ว แวร๊ง!

ข้อใดเป็นสมบัติของรังสีแกมมา

ธาตุกัมมันตรังสี (Radioactive) คือธาตุที่มีองค์ประกอบภายในนิวเคลียสที่ไม่เสถียร ส่งผลให้เกิดการสลายตัว หรือการปล่อยรังสีของธาตุอยู่ตลอดเวลาเพื่อให้จำนวนองค์ประกอบในนิวเคลียสมีความสมดุล และเสถียรมากขึ้น โดยธาตุกัมมันตรังสีนั้นจะเป็นไอโซโทปบางตัวของธาตุบางชนิดเช่น C-14 หรือมักเป็นธาตุที่มีมวลมากหรือมีเลขอะตอมสูงเกินกว่า 82 เช่น เรเดียม (Radium) ที่มีเลขมวลอยู่ที่ 226 และเลขอะตอม 88 หรือยูเรเนียม (Uranium) มีเลขมวลอยู่ที่ 238 และเลขอะตอม 92 เป็นต้น

การค้นพบธาตุกัมมันตรังสี

ธาตุกัมมันตรังสีค้นพบครั้งแรกในปี 1896 โดยนักเคมีชาวฝรั่งเศส อองตวน อองรี แบ็กเกอเรล (Antoine Henri Becquerel) จากความบังเอิญที่เขานำฟิล์มถ่ายรูปวางไว้ใกล้เกลือโพแทสเซียมยูเรนิลซัลเฟต ซึ่งสร้างรอยดำบนแผ่นฟิล์มเสมือนการถูกแสงผ่านเข้าไป เขาจึงเชื่อว่ามีรังสีพลังงานสูงบางชนิดปลดปล่อยออกมาจากเกลือยูเรเนียมก้อนนั้น

นอกจากนี้ เขาทำการทดลองกับสารประกอบของยูเรเนียมชนิดอื่น ต่างให้ผลลัพธ์ไปในทิศทางเดียวกัน โดยหลังจากการค้นพบดังกล่าวเพียง 2 ปี มารี คูรี (Marie Curie) และปีแอร์ คูรี (Pierre Curie) นักเคมีเชื้อสายโปแลนด์ ทำการทดลองกับธาตุหลายชนิดและพบว่าธาตุทอเรียม (Thorium) เรเดียม (Radium) และพอโลเนียม (Polonium) ต่างสามารถแผ่รังสีได้เช่นเดียวกัน จึงส่งผลให้เกิดข้อสรุปร่วมกันที่ว่า ธาตุบางชนิดโดยเฉพาะอย่างยิ่งธาตุที่มีมวลอะตอมสูง มีความสามารถในการแผ่รังสีออกมาได้เองอย่างต่อเนื่อง โดยปรากฏการณ์การแผ่รังสีที่เกิดขึ้นนี้เรียกว่า “กัมมันตภาพรังสี” ขณะที่ธาตุดังกล่าวเรียกว่า “ธาตุกัมมันตรังสี”

รังสีที่แผ่ออกมามีอะไรบ้าง?

  • รังสีแอลฟา (Alpha: α)

เกิดจากการสลายตัวของนิวเคลียสที่มีขนาดใหญ่และมีมวลมาก หรือมีจำนวนโปรตอนภายในนิวเคลียสมาก เพื่อปรับตัวให้มีเสถียรภาพมากขึ้น รังสีแอลฟา หรืออนุภาคแอลฟาในรูปของนิวเคลียสของฮีเลียม (Helium) จึงถูกปล่อยออกมา โดยมีสถานะทางไฟฟ้าเป็นประจุบวก มีมวลค่อนข้างใหญ่ ส่งผลให้รังสีแอลฟาเกิดการเบี่ยงเบนจากการเคลื่อนที่ได้ยาก มีอำนาจทะลุทะลวงต่ำ ไม่สามารถทะลุผ่านสิ่งกีดขวาง เช่น ผิวหนัง แผ่นโลหะบางๆ หรือแผ่นกระดาษไปได้ ดังนั้น เมื่อเกิดการชนเข้ากับสิ่งกีดขวาง รังสีแอลฟาจะถ่ายทอดพลังงานเกือบทั้งหมดออกไป ส่งผลให้เกิดการแตกตัวเป็นไอออนของสารที่รังสีผ่านได้ดี มีอันตรายกับสิ่งมีชีวิตน้อยที่สุด

  • รังสีบีตา (Beta: β)

เกิดจากการสลายตัวของนิวเคลียสที่มีจำนวนนิวตรอนมาก รังสีบีตามีคุณสมบัติคล้ายคลึงกับอิเล็กตรอน (Electron) ซึ่งมีประจุไฟฟ้าเป็นลบและมีมวลต่ำ แต่มีอำนาจทะลุทะลวงสูง (สูงกว่ารังสีแอลฟาราว 100 เท่า) และมีความเร็วในการเคลื่อนที่สูงถึงระดับใกล้เคียงกับความเร็วแสง

  • รังสีแกมมา (Gamma: γ)

เกิดจากการที่นิวเคลียสภายในอะตอมมีพลังงานสูงหรือถูกกระตุ้น จึงก่อให้เกิดรังสีแกมมาที่มีสถานะเป็นกลางทางไฟฟ้า มีสมบัติคล้ายรังสีเอกซ์ (X-ray) คือเป็นคลื่นแม่เหล็กไฟฟ้าที่มีความยาวคลื่นสั้นหรือมีความถี่สูง ไม่มีประจุและไม่มีมวล เป็นรังสีที่มีพลังงานสูง เคลื่อนที่ด้วยความเร็วเท่าแสง และมีอำนาจทะลุทะลวงสูงที่สุด มีอันตรายกับสิ่งมีชีวิตมากที่สุด

การประยุกต์ใช้ธาตุกัมมันตรังสี

  • ด้านธรณีวิทยามีการใช้คาร์บอน-14 (C-14) ในการคำนวณหาอายุของโบราณวัตถุหรืออายุของฟอสซิล
  • ด้านการแพทย์มีการใช้ไอโอดีน-131 (I-131) ในการติดตามเพื่อศึกษาและรักษาโรคต่อมไทรอยด์เป็นพิษ รวมถึงการใช้โคบอลต์-60 (Co-60) และเรเดียม-226 (Ra-226) ในการรักษาโรคมะเร็ง
  • ด้านเกษตรกรรมมีการใช้ฟอสฟอรัส-32 (P-32) ในการศึกษาเส้นทางการเคลื่อนที่และความต้องการธาตุอาหารของพืช และใช้โพแทสเซียม-32 (K-32) ในการหาอัตราการดูดซึมของต้นไม้
  • ด้านอุตสาหกรรมมีการใช้ธาตุกัมมันตรังสีในการตรวจหารอยตำหนิ เช่น รอยร้าวของโลหะหรือท่อขนส่งของเหลว รวมไปถึงการใช้ธาตุกัมมันตรังสีในการตรวจสอบ ควบคุมความหนาของวัตถุ และใช้รังสีฉายบนอัญมณีเพื่อสร้างสีสันให้สวยงาม
  • ด้านการถนอมอาหารมีการใช้รังสีแกมมาของโคบอลต์-60 (Co-60) เพื่อทำลายแบคทีเรียในอาหาร ช่วยให้เก็บรักษาอาหารไว้ได้นานยิ่งขึ้น
  • ด้านพลังงานมีการใช้พลังงานความร้อนที่ได้จากปฏิกิริยานิวเคลียร์ของยูเรเนียม-238 (U-238) ในเตาปฏิกรณ์ปรมาณู สร้างไอน้ำเพื่อใช้ในการผลิตกระแสไฟฟ้า

จะเห็นได้ว่ากัมมันตรังสีใช่ว่าจะส่งผลร้ายแต่เพียงอย่างเดียว ยังมีประโยชน์มากมายหากรู้จักนำมาประยุกต์ใช้ ในปัจจุบันมีการนำประโยชน์จากกัมมันตรังสีมาใช้กันอย่างแพร่หลาย สิ่งหนึ่งที่ทุกคนที่เกี่ยวข้องจะลืมไม่ได้เลยคือการป้องกันอันตรายจากรังสีเหล่านี้

อันตรายจากธาตุกัมมันตรังสี

รังสีสามารถส่งผลให้ตัวกลางที่เคลื่อนผ่านแตกตัวเป็นไอออนได้ รังสีชนิดต่างๆ จึงถือเป็นอันตรายต่อมนุษย์ รวมถึงสิ่งมีชีวิตอื่นๆ การได้รับหรือสัมผัสกับรังสีที่เป็นอันตรายสามารถส่งผลให้ร่างกายเกิดการเจ็บป่วย จากการที่เซลล์ซึ่งประกอบขึ้นเป็นอวัยวะดังกล่าวเกิดการแตกตัว รวมไปถึงเพิ่มความเสี่ยงของการเกิดโรคร้าย เช่น โรคมะเร็ง นอกจากนี้ หากร่างกายได้รับรังสีที่มีอานุภาพสูงเป็นเวลานาน อาจส่งผลกระทบลึกลงไปถึงระดับสารพันธุกรรมภายในเซลล์ ทำให้การสร้างเซลล์ใหม่ในร่างกายเกิดการกลายพันธุ์ โดยเฉพาะเซลล์ที่ทำหน้าที่ในการสืบพันธุ์ ซึ่งเป็นอันตรายอย่างยิ่งต่อการถ่ายทอดลักษณะทางพันธุกรรมไปยังทายาทรุ่นต่อไป

อุปกรณ์ที่ใช้สำหรับตรวจวัดระดับรังสีมีอะไรบ้าง

  • Survey Meter หรืออุปกรณ์สำหรับสำรวจแหล่งกำเนิดรังสีชนิดเคลื่อนย้ายได้ วัตถุประสงค์เพื่อสำรวจปริมาณรังสีในสถานที่ต่างๆหรือติดตั้งเพื่อวัดการแผ่รังสีในบริเวณที่สนใจ บางรุ่นของเครื่องมือสามารถระบุชนิดของรังสีจากฐานข้อมูลได้อีกด้วย
  • Personal Monitor หรืออุปกรณ์ชนิดพกพามีความไวสูง ใช้เพื่อตรวจวัดปริมาณรังสีที่แผ่ออกมาจากเครื่องมือ หรือกระบวนการต่างๆในการผลิต
  • Personal Dosimeter หรืออุปกรณ์พกติดตัว สำหรับรวบรวมปริมาณรังสีสะสมที่ได้รับในการทำงานในพื้นที่เสี่ยงจากภัยรังสี ทั้งนี้เพื่อป้องกันไม่ให้บุคลากรได้รับอันตรายจากรังสีมากเกินค่ามาตรฐานจนอาจเป็นอันตรายได้
  • Portal Security หรืออุปกรณ์ตรวจจับรังสีในพื้นที่ขนาดใหญ่ มักติดตั้งเพื่อเป็นการแจ้งเตือนภัย ให้ผู้รักษาความปลอดภัยได้ทราบและแก้ไขได้ทันท่วงที มักใช้การควบคุมจากระยะไกล

จะเห็นแล้วว่าการเลือกใช้ชนิดของอุปกรณ์ให้เหมาะสม สำคัญต่อการป้องกันอันตราย การคุกคามจากกัมมันตภาพรังสี หากมีข้อสงสัยหรือข้อเสนอแนะประการใด สามารถติดต่อพวกเราได้ทาง @scispec ได้เลยนะครับ วันนี้ขอลาไปก่อน สวัสดีครับ

ข้อใดเป็นสมบัติของรังสีแกมมา *

เกิดจากการที่นิวเคลียสภายในอะตอมมีพลังงานสูงหรือถูกกระตุ้น จึงก่อให้เกิดรังสีแกมมาที่มีสถานะเป็นกลางทางไฟฟ้า มีสมบัติคล้ายรังสีเอกซ์ (X-ray) คือเป็นคลื่นแม่เหล็กไฟฟ้าที่มีความยาวคลื่นสั้นหรือมีความถี่สูง ไม่มีประจุและไม่มีมวล เป็นรังสีที่มีพลังงานสูง เคลื่อนที่ด้วยความเร็วเท่าแสง และมีอำนาจทะลุทะลวงสูงที่สุด มีอันตราย ...

ข้อใดเป็นประโยชน์ของรังสีแกมมา

ประโยชน์ของรังสี รังสีแกมมา ใช้รักษาโรคมะเร็ง (Co-60) , การฆ่าเชื้อโรคในเวชภัณฑ์ (Co-60) ,การวินิจฉัยโรคและรักษาโรคต่อมไทรอยด์ (Co-60)(I-125 , I-131) , ตรวจสอบการทำงานของไต (I-131) , การตรวจสอบการทำงานของตับ/ทางเดินน้ำดี/ กล้ามเนื้อหัวใจ (Tc-99m) , ศึกษาการไหลเวียนของเลือดที่ปอด/สมอง (Tc-99m)

ข้อใดเป็นสมบัติของรังสีบีตา

2. รังสีบีตา สัญลักษณ์ β หรือ e0. 1- ( ประจุลบ) มีคุณสมบัติเหมือนอิเล็กตรอนมีประจุ ไฟฟ้า -1 มีมวลเท่ากับมวลของอิเล็กตรอน มีอ านาจทะลุทะลวงสูงกว่ารังสีแอลฟาถึง 100 เท่า สามารถผ่านแผ่นโลหะบางๆ เช่นแผ่นตะกั่วหนา 1 mm หรือแผ่นอะลูมิเนียมหนา 5 mm มีความเร็ว ใกล้เคียงความเร็วแสง เบี่ยงเบนในสนามไฟฟ้าโดยเบนเข้าหาขั้วบวก

ข้อใดเป็นสมบัติของรังสีแอลฟา

สมบัติของแอลฟา มีประจุไฟฟ้า +2. มีมวลประมาณ 4 amu. รังสีแอลฟาสามารถทำให้ตัวกลางที่รังสีผ่านแตกตัวเป็นไอออนได้ดี รังสีแอลฟามีอำนาจทะลุทะลวงต่ำมาก สามารถวิ่งผ่านอากาศได้ประมาณ 3-5 เซนติเมตร เพราะเมื่อรังสีแอลฟาวิ่งผ่านตัวกลาง สามารถทำให้ตัวกลางนั้นแตกตัวเป็นไอออนได้ดี ทำให้เสียพลังงานอย่างรวดเร็ว