ตัวอย่าง กฎของ บ อย ล์ ในชีวิต ประ จํา วัน

จากวิกิพีเดีย สารานุกรมเสรี

กฎของแก๊ส (อังกฤษ: Gas laws) เป็นกฎที่ใช้สำหรับอธิบายสมบัติต่าง ๆ ของแก๊ส ได้แก่ ปริมาตร (V) ความดัน (P) และอุณหภูมิอุณหพลวัต (T) ของแก๊สนั้น ๆ กฎของแก๊สที่เราควรรู้จัก ประกอบด้วยกฎของบอยล์ กฎของชาร์ล และกฎของแก-ลูว์ซัก (บางครั้งเขียนว่า กฎของเก-ลัสแซก หรือ กฎของเกย์ลูสแซก) สำหรับรายละเอียดของกฎข้างต้นและกฎอื่น ๆ จะได้อธิบายข้างล่างนี้

กฎของบอยล์[แก้]

ตั้งชื่อตามโรเบิร์ต บอยล์ (Robert Boyle) นักเคมีและนักฟิสิกส์ชาวอังกฤษ มีใจความสำคัญว่า ถ้าอุณหภูมิคงตัว ความดันของแก๊สจะแปรผกผันกับปริมาตรของแก๊สนั้น ๆ หรือผลคูณของความดันและปริมาตรของแก๊สมีค่าคงตัวเสมอ ดังสมการ

หรือเขียนได้อีกแบบดังนี้

ตัวอย่าง กฎของ บ อย ล์ ในชีวิต ประ จํา วัน

โดยที่

  • P เป็นความดันของแก๊ส
  • V เป็นปริมาตรของแก๊ส

กฎของชาร์ล[แก้]

ตั้งชื่อตามฌัก อาแล็กซ็องดร์ เซซาร์ ชาร์ล (Jacques Alexandre César Charles) นักวิทยาศาสตร์ชาวฝรั่งเศส มีใจความสำคัญว่า ถ้าความดันคงตัว ปริมาตรของแก๊สจะแปรผันตรงกับอุณหภูมิอุณหพลวัตของแก๊สนั้น ๆ หรือผลหารของปริมาตรกับอุณหภูมิอุณหพลวัตมีค่าคงตัวเสมอ ดังสมการ

เมื่อ k คือค่าคงที่ค่าหนึ่ง

หรือเขียนได้อีกแบบหนึ่งดังนี้

โดยที่

  • V เป็นปริมาตรของแก๊ส
  • T เป็นอุณหภูมิอุณหพลวัต หน่วยเป็นเคลวิน

กฎของแก-ลูว์ซัก[แก้]

ตั้งชื่อตามโฌแซ็ฟ หลุยส์ แก-ลูว์ซัก (Joseph Louis Gay-Lussac) นักฟิสิกส์และนักเคมีชาวฝรั่งเศส มีใจความสำคัญคล้ายกฎของชาร์ล คือ ถ้าปริมาตรคงตัว ความดันของแก๊สจะแปรผันตรงกับอุณหภูมิอุณหพลวัตของแก๊สนั้น ๆ หรือผลหารของความดันกับอุณหภูมิอุณหพลวัตมีค่าคงตัวเสมอ ดังสมการ

หรือเขียนได้อีกแบบหนึ่งดังนี้

โดยที่

  • P เป็นความดันของแก๊ส
  • T เป็นอุณหภูมิอุณหพลวัต หน่วยเป็นเคลวิน

กฎรวมแก๊สและกฎของแก๊สอุดมคติ[แก้]

จากกฎทั้งสามกฎข้างต้น นำมารวมได้เป็นกฎรวมแก๊ส ดังสมการ

ซึ่งจากกฎรวมแก๊ส เราสามารถเปลี่ยนให้เป็นกฎของแก๊สอุดมคติ หรือกฎแก๊สสมบูรณ์ โดยอาศัยกฎของอาโวกาโดร ได้ดังสมการ

โดยที่

  • V เป็นปริมาตรของแก๊ส หน่วยเป็นลูกบาศก์เมตร
  • P เป็นความดันของแก๊ส หน่วยเป็นปาสกาล (หรือพาสคัล)
  • T เป็นอุณหภูมิอุณหพลวัต หน่วยเป็นเคลวิน
  • n เป็นจำนวนโมลของแก๊ส
  • R เป็นค่าคงตัวแก๊สอุดมคติ (ประมาณ 8.3145 จูลต่อ (โมล เคลวิน) )

นอกเหนือจากกฎที่ได้อธิบายไปแล้ว ก็ยังมีกฎการแพร่ของแกรห์ม (หรือบางทีเขียนเป็น เกรแฮม) ทฤษฎีจลน์ของแก๊ส และกฎความดันย่อยของดาลตัน ซึ่งสามารถนำมาใช้อธิบายพฤติกรรมของแก๊สอุดมคติได้เช่นเดียวกัน อย่างไรก็ดี แก๊สอุดมคติอยู่ในสภาวะที่สมมติขึ้นมา กฎเหล่านี้จึงไม่สามารถอธิบายพฤติกรรมที่แท้จริงของแก๊สปกติได้

อ้างอิง[แก้]

  • Castka, Joseph F.; Metcalfe, H. Clark; Davis, Raymond E.; Williams, John E. (2002). Modern Chemistry. Holt, Rinehart and Winston. ISBN 0-03-056537-5.{{cite book}}: CS1 maint: multiple names: authors list (ลิงก์)
  • Guch, Ian (2003). The Complete Idiot's Guide to Chemistry. Alpha, Penguin Group Inc. ISBN 1-59257-101-8.
  • Zumdahl, Steven S (1998). Chemical Principles. Houghton Mifflin Company. ISBN 0-395-83995-5.

กฎของแก๊ส (Gas Law) เป็นกฎที่ใช้สำหรับอธิบายสมบัติต่าง ๆ ของแก๊ส ได้แก่ ปริมาตร (V) ความดัน (P) และอุณหภูมิอุณหพลวัต (T) ของแก๊สนั้น ๆ กฎของแก๊สที่เราควรรู้จัก ประกอบด้วยกฎของบอยล์ กฎของชาร์ล และกฎของเก-ลูซัก (บางครั้งเขียนว่า "กฎของเก-ลัสแซก" หรือ "กฎของเกย์ลูสแซก") สำหรับรายละเอียดของกฎข้างต้นและกฎอื่น ๆ จะได้อธิบายข้างล่างนี้

กฎของบอยล์ (Boyle’s Law)

ตัวอย่าง กฎของ บ อย ล์ ในชีวิต ประ จํา วัน

                                                                            Robert Boyle

                เมื่อทดลองโดยใช้กระบอกฉีดยาและปิดปลายกระบอกฉีดยา เมื่อกดก้านกระบอกฉีดยาทำให้ปริมาตรของ

แก๊สในกระบอกฉีดยาลดลง และเมื่อปล่อยมือก้านกระบอกฉีดยาจะเลื่อนกลับสู่ตำแหน่งเดิม ในทำนองเดียวกันเมื่อ

ดึงก้านกระบอกฉีดยาขึ้น ทำให้ปริมาตรของแก๊สในกระบอกฉีดเพิ่มขึ้น และเมื่อปล่อยมือก้านกระบอกฉีดยาจะ

เลื่อนกลับสู่ตำแหน่งเดิม สามารถใช้ทฤษฎีจลน์ของแก๊สอธิบายได้ว่า เมื่อปริมาตรของแก๊สในกระบอกฉีดยาลดลง 

ทำให้โมเลกุลของแก๊สอยู่ใกล้กันมากขึ้น จึงเกิดการชนกันเองและชนผนังภาชนะมากขึ้น เป็นผลให้ความดันของ

แก๊สในกระบอกฉีดยาเพิ่มขึ้นเมื่อเทียบกับตอนเริ่มต้น ในทางตรงกันข้ามการเพิ่มปริมาตรของแก๊สในกระบอกฉีดยา

ทำให้โมเลกุลของแก๊สอยู่ห่างกัน การชนกันเองของโมเลกุลของแก๊สและการชนผนังภาชนะน้อยลง ความดันของ

แก๊สในกระบอกฉีดยาจึงลดลง

นักวิทยาศาสตร์ได้ทำการทดลองเพื่อศึกษาความสัมพันธ์ระหว่างปริมาตรกับความดันของแก๊ส โดยควบคุมให้อุณหภูมิคงที่ ได้ผลดังตารางต่อไปนี้

การทดลอง
ครั้งที่

ปริมาตร
(V , dm3)

ความดัน
(P , mmHg)

PV
(mmHg. cm3)

1

5.00

760

3.80 x 103

2

10.00

380

3.80 x 103

3

15.00

253

3.80 x 103

4

20.00

191

3.82 x 103

5

25.00

151

3.78 x 103

6

30.00

127

3.81 x 103

7

35.00

109

3.82 x 103

8

40.00

95

3.80 x 103

9

45.00

84

3.78 x 103

จากผลการทดลองในตารางพบว่า ผลคูณของความดันกับปริมาตร (PV) ของแก๊สในการทดลองแต่ละครั้งมีค่าค่อนข้างคงที่ และเมื่อเขียนกราฟแสดงความสัมพันธ์ระหว่างความดันกับปริมาตรของแก๊สจะได้ดังรูปต่อไปนี้

จากข้อมูลในตารางและจากกราฟพบว่าขณะที่อุณหภูมิคงที่ ถ้าปริมาตรของแก๊สเพิ่มขึ้นจะทำให้ความดันของแก๊สลดลง และเมื่อปริมาตรของแก๊สลดลง ความดันของแก๊สจะเพิ่มขึ้น

รอเบิร์ต บอยล์ (Robert Bolye) นักเคมีชาวอังกฤษ ได้ศึกษาเกี่ยวกับการเปลี่ยนปริมาตรของแก๊สในปี ค.ศ. 1662 (พ.ศ. 2205) และสรุปเป็นกฎเรียกว่า “กฎของบอยล์” ซึ่งมีสาระสำคัญดังนี้

เมื่ออุณหภูมิและมวลของแก๊สคงที่ ปริมาตรของแก๊สจะแปรผกผันกับความดัน

ถ้าให้ P แทนความดันของแก๊ส V แทนปริมาตรของแก๊ส ความสัมพันธ์ตามกฎของบอยล์เขียนแสดงความสัมพันธ์ได้ดังนี้

V   a

PV   =   k

ค่าคงที่ k ในสมการนี้ขึ้นอยู่กับอุณหภูมิ ปริมาตร มวลของแก๊ส และลักษณะเฉพาะของแก๊สแต่ละชนิด และจากผลการทดลองพบว่าผลคูณระหว่างปริมาตและความดันของแก๊สมีค่าคงที่เสมอ ดังนั้นถ้าให้ P1 และ V1 เป็นความดันและปริมาตรที่สภาวะที่ 1 จะได้ว่า

P1V1   =   k                  ………. (1)

และถ้าให้ P1 และ V1 เป็นความดันและปริมาตรที่สภาวะที่ 1 จะได้ว่า

P2V2   =   k                  ………. (2)

(1)  =  (2)       P1V1   =   P2V2

ผลที่ได้จากกฎของบอยล์เมื่อนำมาเขียนกราฟโดยให้ความดันเป็นแกนตั้ง และปริมาตรเป็นแกนนอน จะได้กราฟ

จากกราฟถ้าอุณหภูมิเปลี่ยนไปจะได้กราฟที่มีลักษณะไฮเปอร์โบลา และพบว่าอุณหภูมิยิ่งสูงขึ้น ลักษณะของเส้นกราฟเกือบจะเป็นเส้นตรง

ตัวอย่าง กฎของ บ อย ล์ ในชีวิต ประ จํา วัน

จากกราฟนี้ กราฟแต่ละเส้นแสดงความสัมพันธ์ระหว่างความดันกับปริมาตรที่ต่างกัน และได้กราฟที่มีลักษณะเป็นเส้นโค้ง ซึ่งไม่สามารถบอกได้ชัดเจนว่าเป็นไปตามกฎของบอยล์หรือไม่ แต่ถ้าเขียนกราฟระหว่างความดันกับส่วนกลับของปริมาตรจะได้กราฟที่เป็นเส้นตรง ซึ่งถ้าหากมีการเบี่ยงเบนเกิดขึ้น เส้นจะเฉออกจากแนวเส้นตรงอย่างเห็นได้ชัด

ตัวอย่างที่ 1     แก๊สจำนวน 15 g มีปริมาตร 10 ลิตร ที่ความดัน 150 mmHg เมื่ออุณหภูมิคงที่  ถ้าเปลี่ยนความดันเป็น 50 mmHg  แก๊สจะมีปริมาตรเท่าใด

วิธีทำ P1   =   150  mmHg

P2   =   50   mmHg

V1   =   10   ลิตร

V2   =   ?

จากสูตร           P1V1   =   P2V2

       150 x 10   =   50 x V2

                         V2   =  1500 / 50

                   =   30   ลิตร

ตัวอย่างที่ 2     แก๊สชนิดหนึ่งมีความดันเริ่มต้นเท่ากับ 200 mmHg  แก๊สชนิดนี้จะมีความดันสุดท้ายเป็นเท่าใดถ้าทำให้แก๊สมีปริมาตรลดลงเป็นครึ่งหนึ่งของปริมาตรเดิมเมื่ออุณหภูมิคงที่

วิธีทำ P1   =   200  mmHg

P2   =   ?     mmHg

V1   =   V1

V2   =  V1/V2

จากสูตร           P1V1   =   P2V2

200 x V1   =   P2 x (V1/V2)

           P2   =  200 x V1

                        V1/V2

                   =   400  mmHg

กฎของชาร์ล (Charle’s Law)

ในการทดลองจุ่มกระบอกฉีดยาซึ่งบรรจุน้ำจำนวนหนึ่งลงในน้ำร้อน น้ำในกระบอกฉีดยาจะถูกดันออก ในทางตรงกันข้าม ถ้าจุ่มกระบอกฉีดยาลงในน้ำเย็น น้ำจากภายนอกจะเข้าไปแทนที่อากาศในกระบอกฉีดยา นั่นคือ การเพิ่มอุณหภูมิมีผลให้ปริมาตรของแก๊สเพิ่มขึ้น และการลดอุณหภูมิมีผลให้ปริมาตรของแก๊สลดลงด้วย แสดงว่าอุณหภูมิมีผลต่อการเปลี่ยนแปลงปริมาตรของแก๊ส การเปลี่ยนแปลงนี้ใช้ทฤษฎีจลน์ของแก๊สอธิบายได้ว่า การเพิ่มอุณหภูมิมีผลทำให้พลังงานจลน์เฉลี่ยของแก๊สเพิ่มขึ้น โมเลกุลของแก๊สจึงเคลื่อนที่เร็วขึ้น ทำให้โมเลกุลชนกันเองและชนผนังภาชนะมากขึ้น รวมทั้งพลังงานในการชนกันสูงขึ้นด้วย เป็นผลให้ความดันของแก๊สในกระบอกฉีดยาสูงขึ้นด้วย จึงดันน้ำออกจากกระบอกฉีดยาจนความดันของแก๊สภายในเท่ากับภายนอก จึงสังเกตเห็นว่าแก๊สในกระบอกฉีดยามีปริมาตรเพิ่มขึ้น ในกลับกันเมื่อลดอุณหภูมิ พลังงานจลน์เฉลี่ยของแก๊สในกระบอกฉีดยาจะลดลง ทำให้การชนกันเองระหว่างโมเลกุลของแก๊สและการชนผนังภาชนะน้อยลง รวมทั้งพลังงานในการชนลดลง ความดันของแก๊สในกระบอกฉีดยาจึงต่ำ อากาศภายนอกซึ่งมีความดันสูงกว่าจึงดันน้ำให้เข้าไปในกระบอกฉีดยา ความดันภายในจึงเพิ่มขึ้นจนเท่ากับความดันภายนอก จึงสังเกตเห็นว่าปริมาตรของแก๊สในกระบอกฉีดยาลดลงจนกระทั่งคงที่  จึงสรุปได้ว่าอุณหภูมิเป็นอีกปัจจัยหนึ่งที่มีผลต่อการเปลี่ยนปริมาตรของแก๊ส

ตัวอย่าง กฎของ บ อย ล์ ในชีวิต ประ จํา วัน

Jacques Charles

                จากผลการทดลองพบว่าเมื่อนำข้อมูลมาเขียนกราฟ จะได้กราฟเส้นตรงที่มีความชันคงที่ และทำให้คาดคะเนได้ว่า ถ้าลดอุณหภูมิของแก๊สลงเรื่อย ๆ แก๊สจะไม่มีปริมาตร หรือมีปริมาตรเป็นศูนย์ที่อุณหภูมิ –273OC แต่

โดยความเป็นจริงแก๊สจะไม่สามารถมีปริมาตรเป็นศูนย์ได้ เนื่องจากเมื่อลดอุณหภูมิลงเรื่อย ๆ แก๊สจะเปลี่ยนสถานะเป็นของเหลวก่อนที่อุณหภูมิจะถึง –273OC  ซึ่งนักวิทยาศาสตร์ได้กำหนดให้อุณหภูมิ –273OC มีค่าเท่ากับ 0 เคล

วิน (K)  โดยมีความสัมพันธ์ดังนี้

เมื่อทดลองศึกษาการเปลี่ยนปริมาตรของแก๊สเมื่อเปลี่ยนอุณหภูมิ พบความสัมพันธ์ระหว่างปริมาตรแก๊สกับอุณหภูมิในหน่วยองศาเซลเซียสและในหน่วยเคลวิน ดังตาราง

การทดลองครั้งที่

t ( OC )

T ( K )

V (cm3)

V/T (cm3/K)

1

10

283

100

0.35

2

50

323

114

0.35

3

100

373

132

0.35

4

200

473

167

0.35

จากตารางจะเห็นว่า เมื่อเปลี่ยนอุณหภูมิในหน่วยเซลเซียสเป็นหน่วยเคลวิน อัตราส่วนระหว่างปริมาตรกับอุณหภูมิเคลวินจะมีค่าคงที่

จ๊ากอาเล็กซองเดร์เซซา ชาร์ล (Jacqes A.C. Charles) นักวิทยาศาสตร์ชาวฝรั่งเศส ได้ศึกษาความสัมพันธ์ระหว่างอุณหภูมิกับปริมาตรแก๊ส ในปี ค.ศ.1778 (พ.ศ.2321) และสรุปความ สัมพันธ์เป็นกฎ เรียกว่ากฎของชาร์ล ซึ่งมีใจความดังนี้

เมื่อมวลและความดันของแก๊สคงที่ ปริมาตรของแก๊สจะแปรผันตรงกับอุณหภูมิเคลวิน


ตัวอย่าง กฎของ บ อย ล์ ในชีวิต ประ จํา วัน

ตัวอย่าง กฎของ บ อย ล์ ในชีวิต ประ จํา วัน

จากกฎของชาร์ล สามารถเขียนเป็นความสัมพันธ์ได้ดังนี้

V   a    T

V   =   kT

V/T=   k

ถ้าให้  V1  เป็นปริมาตรของแก๊สที่อุณหภูมิ  T1

V2  เป็นปริมาตรของแก๊สที่อุณหภูมิ  T2

เนื่องจากอัตราส่วนระหว่าง V กับ T คงที่  ดังนั้น

V1 =   V2

T1          T2

ตัวอย่างที่ 3 แก๊สชนิดหนึ่งมีปริมาตร 80 cm3  ที่อุณหภูมิ  45OC  แก๊สนี้จะมีปริมาตรเท่าใดที่อุณหภูมิ  0 OC  ถ้าความดันคงที่

วิธีทำ V1   =   80   cm3

V2   =   ?

T1   =   273 + 45   =   318 K

T2   =   273 + 0     =   273 K

       80/318   =   V2/273

V2   =  80 x 273

318

                      =   68.68   cm3

ตัวอย่างที่ 4 แก๊สชนิดหนึ่งมีปริมาตร 30 ลิตร ที่อุณหภูมิ 25 OC  ถ้าความดันคงที่ แก๊สนี้จะมีปริมาตรเท่าใดเมื่ออุณหภูมิเปลี่ยนไปเป็น  100 OC

วิธีทำ V1   =   30   ลิตร

V2   =   ?

T1   =   273 + 25    =      298 K

T2   =   273 + 100   =     373 K

30 =     V2

298       373

V2      =    30 x 373

       298

            =   37.55     ลิตร

กฎเกย์ลูสแซก

เกย์ลูสแซกได้ทำการทดลองเพิ่มเติมต่อไป โดยให้ปริมาตรของแก๊สคงที่ เพื่อที่จะหาความสัมพันธ์ระหว่างความดันกับอุณหภูมิ ผลที่ได้คือ ความดันของแก๊สใด ๆ จะแปรผันตรงกับอุณหภูมิเมื่อปริมาตรคงที่ ดังนั้น

P   a T

P   =   kT

P =   k

T

และ             P1    =     P2

      T1           T2

ตัวอย่างที่ 5     ถังใบหนึ่งถ้ามีแก๊สบรรจุอยู่จำนวนหนึ่ง มีความดัน 135 บรรยากาศ ที่อุณหภูมิ 20 OC  ถ้าให้แก๊สภายในถังร้อนขึ้นเป็น 85OC จะมีความดันเท่าใดเมื่อปริมาตรคงที่

วิธีทำ

P1   =    P2

T1         T2

 135/(273+20) =  P2/(273 +85)

            P2         =  135  x 358

                                   293

                          =   164.9      บรรยากาศ

จากกฎทั้งสามกฎข้างต้น นำมารวมได้เป็นกฎรวมแก๊ส ดังสมการ

ตัวอย่าง กฎของ บ อย ล์ ในชีวิต ประ จํา วัน

ซึ่งจากกฎรวมแก๊ส เราสามารถเปลี่ยนให้เป็นกฎของแก๊สอุดมคติ หรือกฎแก๊สสมบูรณ์ โดยอาศัย กฎของอาโวกาโดร ได้ดังสมการ

ตัวอย่าง กฎของ บ อย ล์ ในชีวิต ประ จํา วัน

โดยที่  V เป็นปริมาตรของแก๊ส หน่วยเป็นลูกบาศก์เมตร

            P เป็นความดันของแก๊ส หน่วยเป็นปาสกาล (หรือพาสคัล)

              T เป็นอุณหภูมิอุณหพลวัต หน่วยเป็นเคลวิน

             n เป็นจำนวนโมลของแก๊ส

              R เป็นค่าคงตัวแก๊สอุดมคติ (ประมาณ 8.3145 จูลต่อ(โมล เคลวิน))

นอกเหนือจากกฎที่ได้อธิบายไปแล้ว ก็ยังมี กฎการแพร่ของแกรห์ม (หรือบางทีเขียนเป็น เกรแฮม) ทฤษฎีจลน์ของแก๊สและ กฎความดันย่อยของดาลตัน ซึ่งสามารถนำมาใช้อธิบายพฤติกรรมของแก๊สอุดมคติได้เช่นเดียวกัน อย่างไรก็ดี แก๊สอุดมคติอยู่ในสภาวะที่สมมติขึ้นมา กฎเหล่านี้จึงไม่สามารถอธิบายพฤติกรรมที่แท้จริงของแก๊สปกติได้